PROOF

- 1 Give a counter-example to prove that each of the following statements is false.
 - **a** If $a^2 b^2 > 0$, where *a* and *b* are real, then a b > 0.
 - **b** There are no prime numbers divisible by 7.
 - **c** If x and y are irrational and $x \neq y$, then xy is irrational.
 - **d** For all real values of x, $\cos (90 |x|)^\circ = \sin x^\circ$.
- 2 For each statement, either prove that it is true or find a counter-example to prove that it is false.
 - **a** There are no prime numbers divisible by 6.
 - **b** $(3^n + 2)$ is prime for all positive integer values of *n*.
 - **c** \sqrt{n} is irrational for all positive integers *n*.
 - **d** If *a*, *b* and *c* are integers such that *a* is divisible by *b* and *b* is divisible by *c*, then *a* is divisible by *c*.
- **3** Use proof by contradiction to prove each of the following statements.
 - **a** If n^3 is odd, where *n* is a positive integer, then *n* is odd.
 - **b** If x is irrational, then \sqrt{x} is irrational.
 - **c** If *a*, *b* and *c* are integers and *bc* is not divisible by *a*, then *b* is not divisible by *a*.
 - **d** If $(n^2 4n)$ is odd, where *n* is a positive integer, then *n* is odd.
 - e There are no positive integers, *m* and *n*, such that $m^2 n^2 = 6$.
- 4 Given that x and y are integers and that $(x^2 + y^2)$ is divisible by 4, use proof by contradiction to prove that
 - **a** x and y are not both odd,
 - **b** x and y are both even.
- 5 For each statement, either prove that it is true or find a counter-example to prove that it is false.
 - **a** If a and b are positive integers and $a \neq b$, then $\log_a b$ is irrational.
 - **b** The difference between the squares of any two consecutive odd integers is divisible by 8.
 - c $(n^2 + 3n + 13)$ is prime for all positive integer values of *n*.
 - **d** For all real values of *x* and *y*, $x^2 2y(x y) \ge 0$.
- 6 a Prove that if

$$\sqrt{2} = \frac{p}{q}$$

where p and q are integers, then p must be even.

b Use proof by contradiction to prove that $\sqrt{2}$ is irrational.