Proof

1 Give a counter-example to prove that each of the following statements is false.
a If $a^{2}-b^{2}>0$, where a and b are real, then $a-b>0$.
b There are no prime numbers divisible by 7 .
c If x and y are irrational and $x \neq y$, then $x y$ is irrational.
d For all real values of $x, \cos (90-|x|)^{\circ}=\sin x^{\circ}$.
2 For each statement, either prove that it is true or find a counter-example to prove that it is false.
a There are no prime numbers divisible by 6 .
b $\left(3^{n}+2\right)$ is prime for all positive integer values of n.
c \sqrt{n} is irrational for all positive integers n.
d If a, b and c are integers such that a is divisible by b and b is divisible by c, then a is divisible by c.

3 Use proof by contradiction to prove each of the following statements.
a If n^{3} is odd, where n is a positive integer, then n is odd.
b If x is irrational, then \sqrt{x} is irrational.
c If a, b and c are integers and $b c$ is not divisible by a, then b is not divisible by a.
d If $\left(n^{2}-4 n\right)$ is odd, where n is a positive integer, then n is odd.
e There are no positive integers, m and n, such that $m^{2}-n^{2}=6$.
4 Given that x and y are integers and that $\left(x^{2}+y^{2}\right)$ is divisible by 4 , use proof by contradiction to prove that
a x and y are not both odd,
b x and y are both even.
5 For each statement, either prove that it is true or find a counter-example to prove that it is false.
a If a and b are positive integers and $a \neq b$, then $\log _{a} b$ is irrational.
b The difference between the squares of any two consecutive odd integers is divisible by 8 .
c $\left(n^{2}+3 n+13\right)$ is prime for all positive integer values of n.
d For all real values of x and $y, x^{2}-2 y(x-y) \geq 0$.
6 a Prove that if

$$
\sqrt{2}=\frac{p}{q},
$$

where p and q are integers, then p must be even.
b Use proof by contradiction to prove that $\sqrt{2}$ is irrational.

